Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Immunol ; 13: 957518, 2022.
Article in English | MEDLINE | ID: covidwho-2316363

ABSTRACT

The highly infectious coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a new coronavirus that has been spreading since late 2019 and has caused millions of deaths worldwide. COVID-19 continues to spread rapidly worldwide despite high vaccination coverage; therefore, it is crucial to focus on prevention. Most patients experience only mild symptoms of COVID-19. However, in some cases, serious complications can develop mainly due to an exaggerated immune response; that is, a so-called cytokine storm, which can lead to acute respiratory distress syndrome, organ failure, or, in the worst cases, death. N-3 polyunsaturated fatty acids and their metabolites can modulate inflammatory responses, thus reducing the over-release of cytokines. It has been hypothesized that supplementation of n-3 polyunsaturated fatty acids could improve clinical outcomes in critically ill COVID-19 patients. Some clinical trials have shown that administering n-3 polyunsaturated fatty acids to critically ill patients can improve their health and shorten the duration of their stay in intensive care. However, previous clinical studies have some limitations; therefore, further studies are required to confirm these findings.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Critical Illness , Cytokines , Fatty Acids, Omega-3/therapeutic use , Humans , SARS-CoV-2
2.
Eur J Med Res ; 27(1): 186, 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2043143

ABSTRACT

BACKGROUND: Recently, the coronavirus (COVID-19) pandemic is a chief public health disaster caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are no established effective preventive or therapeutic anti-COVID-19 drugs available except for some recently approved vaccines. Still, countless recent studies recommend various alternative and complementary approaches against COVID-19, which are medicinal herbs employed as traditional remedies to enhance immunity to struggle with viral infections. In addition, physicians worldwide are highly interested in vitamin and mineral supplements to help them combat COVID-19 either through protection or treatment. Dietary supplements specifically vitamin D, vitamin C, and zinc provide good prophylactic and therapeutic support to the presently available treatment regimens. In the present work, we have focused on plant-based remedies with promising anti-COVID-19 activities. AIM: To enable investigators and researchers to identify potential herbal compounds with anti-COVID activity to be used as promising therapies to combat this pandemic. MAIN BODY: This review highlights the recently published studies concerning natural traditional herbs, herbal bioactive metabolites, dietary supplements, and functional foods that could help prevent and/or treat COVID-19. Herein, we explored medicinal herbs as potential inhibitors of SARS-CoV-2 and discussed how these studies help form larger discussions of diet and disease. Moreover, by investigating the herbal bioactive components, we have outlined several medicinal herbs that can fight against COVID-19 by hindering SARS-CoV-2 replication and entry to its host cells, deterring the cytokine storm, and several other means. Finally, we have summarized various herbal products, functional foods, and dietary supplements with potent bioactive compounds which can inhibit and/or prevent COVID-19 disease progression. CONCLUSIONS: Based on the studies reviewed in this work, it was concluded with no doubt that phytochemical components present in various herbs could have a starring role in the deterrence and cure of coronavirus contagion.


Subject(s)
COVID-19 Drug Treatment , Plants, Medicinal , Ascorbic Acid , Humans , Pandemics/prevention & control , Phytochemicals , Plants, Medicinal/chemistry , SARS-CoV-2 , Vitamin D/therapeutic use , Vitamins/therapeutic use , Zinc
3.
Trends Biotechnol ; 40(10): 1248-1260, 2022 10.
Article in English | MEDLINE | ID: covidwho-2016093

ABSTRACT

Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids. Here, we explore the use of molecular farming from producing medicines to developing functional food crops (biofortification). We review recent progress in producing pharmaceutical proteins and bioactive substances in rice endosperm and compare this platform with other plant expression systems. We describe how rice endosperm could be modified to design metabolic pathways and express and store stable products and discuss the factors restricting the commercialization of transgenic rice products and future prospects.


Subject(s)
Endosperm , Oryza , Carotenoids , Endosperm/genetics , Endosperm/metabolism , Flavonoids , Gene Expression Regulation, Plant , Molecular Farming , Oryza/genetics , Oryza/metabolism , Pharmaceutical Preparations/metabolism , Plant Proteins , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/metabolism , Vitamins/metabolism
4.
AMB Express ; 12(1): 60, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1862147

ABSTRACT

The increasing multidrug-resistance in pathogenic microbes and the emergence of new microbial pathogens like coronaviruses have necessitated the discovery of new antimicrobials to treat these pathogens. The use of antibiotics began after the discovery of penicillin by Alexander Fleming from Penicillium chrysogenum. This has attracted the scientific community to delve deep into the antimicrobial capabilities of various fungi in general and Phoma spp. in particular. Phoma spp. such as Phoma arachidicola, P. sorghina, P. exigua var. exigua, P. herbarum, P. multirostrata, P. betae, P. fimeti, P. tropica, among others are known to produce different bioactive metabolites including polyketides, macrosporin, terpenes and terpenoids, thiodiketopiperazines, cytochalasin derivatives, phenolic compounds, and alkaloids. These bioactive metabolites have already demonstrated their antimicrobial potential (antibacterial, antifungal, and antiviral) against various pathogens. In the present review, we have discussed the antimicrobial potential of secondary metabolites produced by different Phoma species. We have also deliberated the biogenic synthesis of eco-friendly antimicrobial silver nanoparticles from Phoma and their role as potential antimicrobial agents.

5.
Antioxidants (Basel) ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1702232

ABSTRACT

COVID-19-a severe acute respiratory syndrome disease caused by coronavirus 2 (SARS-CoV-2)-has recently attracted global attention, due to its devastating impact, to the point of being declared a pandemic. The search for new natural therapeutic drugs is mandatory, as the screening of already-known antiviral drugs so far has led to poor results. Several species of marine algae have been reported as sources of bioactive metabolites with potential antiviral and immunomodulatory activities, among others. Some of these bioactive metabolites might be able to act as antimicrobial drugs and also against viral infections by inhibiting their replication. Moreover, they could also trigger immunity against viral infection in humans and could be used as protective agents against COVID-In this context, this article reviews the main antiviral activities of bioactive metabolites from marine algae and their potential exploitation as anti-SARS-CoV-2 drugs.

6.
Curr Pharm Des ; 27(31): 3389-3398, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1413755

ABSTRACT

BACKGROUND: The rapid eruption of Coronavirus at the end of 2019 has caused global health crisis and significant loss to the economy and social well-being. This created a massive shortage of advanced health facilities with inadequate medicinal supply, further deteriorating human health conditions. On the basis of adverse effects of the ongoing pandemic, this review has been proposed to evaluate the antiviral efficacy of plant- based therapeutics, against SARS-CoV-2 (commonly called COVID-19) infection. It highlights the possible action of the mechanism of phytotherapeutic drugs against coronavirus inhibition, further validated by clinical trials on herbal formulas is reviewed. Though the experimental studies on COVID-19 treatment are limited, the undesirable side effects of herbal drugs and unidentified compounds cannot be ignored. OBJECTIVE: We have made an effort to study the prospective plant-derived bioactive entities and their effectiveness in the treatment of COVID-19 and also emphasize on safety and regulatory concerns of phytomedicines. METHODS: The methodology involves relevant studies on COVID-19 treatment based on herbal extracts and the purified bioactive metabolites. The e-literature survey has been done by downloading research articles available on PubMed (National Library of medicine), Elsevier, and Google scholar search engines. The keywords used are plant metabolites, natural bioactive, phytotherapeutic drugs, clinical trials, SARS-CoV-2, Coronavirus inhibitors and herbal extracts. RESULTS: The review pays particular attention to the etiological study of the COVID-19 virus and its inhibition using medicinal plant metabolites as immunomodulatory agents. The application of valuable bioactives like phenolic compounds, saponins, alkaloids, tannins, flavonoids and terpenoids in preparing herbal formula/drug has been focused on. The drug resistance of bioactive compounds and their side effects on human health were discussed for effective phytomedicine, thus, emphasizing the perspectives of phytotherapeutic drugs as a safe remedy to boost immunomodulatory functions and antiviral activity against COVID-19. CONCLUSION: Altogether, the review presents the action mechanism of plant extracts rich in bioactive compounds and depicted potential antiviral activity against SARS-CoV-2. These plant bioactive compounds can serve as lead molecules to develop phytomedicine, ensuring all safety regulations in the clinical trials to treat or prevent COVID-19 viral infections.


Subject(s)
COVID-19 Drug Treatment , Plants, Medicinal , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Plant Extracts/pharmacology , SARS-CoV-2
7.
Front Pharmacol ; 12: 671498, 2021.
Article in English | MEDLINE | ID: covidwho-1268277

ABSTRACT

SARS-CoV-2 is the latest worldwide pandemic declared by the World Health Organization and there is no established anti-COVID-19 drug to combat this notorious situation except some recently approved vaccines. By affecting the global public health sector, this viral infection has created a disastrous situation associated with high morbidity and mortality rates along with remarkable cases of hospitalization because of its tendency to be high infective. These challenges forced researchers and leading pharmaceutical companies to find and develop cures for this novel strain of coronavirus. Besides, plants have a proven history of being notable wellsprings of potential drugs, including antiviral, antibacterial, and anticancer therapies. As a continuation of this approach, plant-based preparations and bioactive metabolites along with a notable number of traditional medicines, bioactive phytochemicals, traditional Chinese medicines, nutraceuticals, Ayurvedic preparations, and other plant-based products are being explored as possible therapeutics against COVID-19. Moreover, the unavailability of effective medicines against COVID-19 has driven researchers and members of the pharmaceutical, herbal, and related industries to conduct extensive investigations of plant-based products, especially those that have already shown antiviral properties. Even the recent invention of several vaccines has not eliminated doubts about safety and efficacy. As a consequence, many limited, unregulated clinical trials involving conventional mono- and poly-herbal therapies are being conducted in various areas of the world. Of the many clinical trials to establish such agents as credentialed sources of anti-COVID-19 medications, only a few have reached the landmark of completion. In this review, we have highlighted and focused on plant-based anti-COVID-19 clinical trials found in several scientific and authenticated databases. The aim is to allow researchers and innovators to identify promising and prospective anti-COVID-19 agents in clinical trials (either completed or recruiting) to establish them as novel therapies to address this unwanted pandemic.

8.
Mol Divers ; 26(1): 389-407, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1233268

ABSTRACT

The latest global outbreak of 2019 respiratory coronavirus disease (COVID-19) is triggered by the inception of novel coronavirus SARS-CoV2. If recent events are of any indicators of the epidemics of past, it is undeniable to state a fact that the SARS-CoV2 viral infection is highly transmissible with respect to its previously related SARS-CoV's. Papain-like protease (PLpro) is an enzyme that is required by the virus itself for replicating into the host system; and it does so by processing its polyproteins into a functional replicase complex. PLpro is also known for downregulating the genes responsible for producing interferons, an essential family of molecules produced in response to viral infection, thus making this protein an indispensable drug target. In this study, PLpro inhibitors were identified through high throughput structure-based virtual screening approach from NPASS natural product library possessing ~ 35,000 compounds. Top five hits were scrutinised based on structural aromaticity and ability to interact with a key active site residue of PLpro, Tyr268. For second level of screening, the MM-GBSA End-Point Binding Free Energy Calculation of the docked complexes was performed, which identified Caesalpiniaphenol A as the best hit. Caesalpiniaphenol A not only possess a double ring aromatic moiety but also has lowest minimum binding energy, which is at par with the control GRL0617, the only known inhibitor of SARS-CoV2 PLpro. Details of the Molecular Dynamics (MD) simulation and ADMET analysis helped to conclusively determine Caesalpiniaphenol A as potentially an inhibitor of SARS-CoV2 PLpro.


Subject(s)
COVID-19 Drug Treatment , Papain , Aniline Compounds , Benzamides , Humans , Naphthalenes , Peptide Hydrolases , RNA, Viral , SARS-CoV-2 , Workflow
9.
Pharmacol Ther ; 219: 107703, 2021 03.
Article in English | MEDLINE | ID: covidwho-813821

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has currently led to a global pandemic with millions of confirmed and increasing cases around the world. The novel SARS-CoV-2 not only affects the lungs causing severe acute respiratory dysfunction but also leads to significant dysfunction in multiple organs and physiological systems including the cardiovascular system. A plethora of studies have shown the viral infection triggers an exaggerated immune response, hypercoagulation and oxidative stress, which contribute significantly to poor cardiovascular outcomes observed in COVID-19 patients. To date, there are no approved vaccines or therapies for COVID-19. Accordingly, cardiovascular protective and supportive therapies are urgent and necessary to the overall prognosis of COVID-19 patients. Accumulating literature has demonstrated the beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFA) toward the cardiovascular system, which include ameliorating uncontrolled inflammatory reactions, reduced oxidative stress and mitigating coagulopathy. Moreover, it has been demonstrated the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors to a group of potent bioactive lipid mediators, generated endogenously, which mediate many of the beneficial effects attributed to their parent compounds. Considering the favorable safety profile for n-3 PUFAs and their metabolites, it is reasonable to consider n-3 PUFAs as potential adjuvant therapies for the clinical management of COVID-19 patients. In this article, we provide an overview of the pathogenesis of cardiovascular complications secondary to COVID-19 and focus on the mechanisms that may contribute to the likely benefits of n-3 PUFAs and their metabolites.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Fatty Acids, Omega-3/administration & dosage , Animals , COVID-19/diagnosis , Cardiovascular Diseases/diagnosis , Chemotherapy, Adjuvant/methods , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Humans , Oxidative Stress/drug effects , Oxidative Stress/physiology , Randomized Controlled Trials as Topic/methods
SELECTION OF CITATIONS
SEARCH DETAIL